
Search & hit enter…

Navigation

open all | close all

Legal

Contact Nefastor

Computers

Microcontrollers

ESP32

STM32

Libraries

STM32F1

Maple Mini

The Electronics

Programming

Basic Prototype Board

First Code

OLED Prototype Board

Adding Interface Connectors

I²C Programming

STM32F3

STM32H7

USB

Getting Started with STM32

Robotics

Legal

All content on this site is

copyrighted. Designs and

source code are o�ered

under the GPLv3 license.

Click here to learn more.

Meta

NEFASTOR ONLINE
Screwing Up And Around So You Don't Have To

We’ve built the simplest possible board based on the , now it’s time to

verify that it works, and that we have an operational to go from an idea to

actual software running on actual hardware.

To that end, we’re going to create a software project named ,

which purpose will be to blink the on the Maple Mini. It doesn’t need to be more

complicated than that. Especially since getting there will take quite a few steps.

1.1. STM32CubeIDE

I’ve already mentioned it in the page on programing. If you’ve missed it, well, that’s

why I put a navigation menu on my website.

If you haven’t, go ahead and install on your PC. This can take a

while, so I’m going to blabber a little to prevent you from falling asleep. Feel free to

skip to the next section, I won’t mind.

I’ve mentioned that there are several viable options for developing software for

 boards. The most powerful, as you’d expect, are expensive. They are also

geared towards businesses who make products you can buy, and who have di�erent

priorities than you or I have. For example, if your business relies on being able to

develop code, you will want actual technical support (which isn’t).

And real technical support costs money.

The free (which I call “Cube” for short) strikes a balance between

cost (zero Euro) and capability. It’s a lot like an actual professional tool you’d pay

money for, and it’s nothing like that simplistic Visual Basic joke the Arduino

community calls an “IDE”. Cube also has native support for all of ST’s boards,

and of course for all STM32 microcontrollers.

Moreover, it comes with and a (Hardware Abstraction Layer)

which greatly accelerate the development of prototypes. And which we’ll be putting

to use soon.

Last but not least, it’s the only STM32 IDE I know of that has a for

con�guring your microcontroller and its peripherals. This tool generates all the

initialization code for your STM32, which saves you a lot of time and errors. Even

First Code
NEFASTOR ONLINE > MICROCONTROLLERS > STM32 > STM32F1 > MAPLE MINI > FIRST CODE

javascript:pge1.openAll();
javascript:pge1.openAll();
javascript:pge1.closeAll();
javascript:pge1.closeAll();
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/contact-nefastor/
https://nefastor.com/contact-nefastor/
javascript: pge1.o(3);
javascript: pge1.o(3);
https://nefastor.com/computers/
https://nefastor.com/computers/
javascript: pge1.o(17);
javascript: pge1.o(17);
https://nefastor.com/microcontrollers/
https://nefastor.com/microcontrollers/
javascript: pge1.o(18);
javascript: pge1.o(18);
https://nefastor.com/microcontrollers/esp32/
https://nefastor.com/microcontrollers/esp32/
javascript: pge1.o(22);
javascript: pge1.o(22);
https://nefastor.com/microcontrollers/stm32/
https://nefastor.com/microcontrollers/stm32/
javascript: pge1.o(23);
javascript: pge1.o(23);
https://nefastor.com/microcontrollers/stm32/libraries/
https://nefastor.com/microcontrollers/stm32/libraries/
javascript: pge1.o(36);
javascript: pge1.o(36);
https://nefastor.com/microcontrollers/stm32/stm32f1/
https://nefastor.com/microcontrollers/stm32/stm32f1/
javascript: pge1.o(37);
javascript: pge1.o(37);
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/the-electronics/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/the-electronics/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/programming/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/programming/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/basic-prototype-board/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/basic-prototype-board/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/first-code/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/first-code/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/oled-prototype-board/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/oled-prototype-board/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/adding-interface-connectors/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/adding-interface-connectors/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/ic-programming/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/ic-programming/
https://nefastor.com/microcontrollers/stm32/stm32f3/
https://nefastor.com/microcontrollers/stm32/stm32f3/
javascript: pge1.o(46);
javascript: pge1.o(46);
https://nefastor.com/microcontrollers/stm32/stm32h7/
https://nefastor.com/microcontrollers/stm32/stm32h7/
javascript: pge1.o(49);
javascript: pge1.o(49);
https://nefastor.com/microcontrollers/stm32/usb/
https://nefastor.com/microcontrollers/stm32/usb/
javascript: pge1.o(56);
javascript: pge1.o(56);
https://nefastor.com/microcontrollers/stm32/getting-started-with-stm32/
https://nefastor.com/microcontrollers/stm32/getting-started-with-stm32/
javascript: pge1.o(60);
javascript: pge1.o(60);
https://nefastor.com/robotics/
https://nefastor.com/robotics/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/
https://nefastor.com/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/programming/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/programming/
https://nefastor.com/
https://nefastor.com/
https://nefastor.com/
https://nefastor.com/microcontrollers/
https://nefastor.com/microcontrollers/
https://nefastor.com/microcontrollers/
https://nefastor.com/microcontrollers/stm32/
https://nefastor.com/microcontrollers/stm32/
https://nefastor.com/microcontrollers/stm32/
https://nefastor.com/microcontrollers/stm32/stm32f1/
https://nefastor.com/microcontrollers/stm32/stm32f1/
https://nefastor.com/microcontrollers/stm32/stm32f1/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/
https://nefastor.com/microcontrollers/stm32/stm32f1/maple-mini/

Log in

Entries feed

Comments feed

WordPress.org

better, you can modify your con�guration and regenerate that code at any time.

For all those reasons, Cube is my default choice when working with STM32.

OK, enough talk, launch Cube.

1.2. Create a Project

 is based on Eclipse. As a result, its menus may be needlessly complicated.

Don’t be scared, there’s a lot of stu� we won’t be using. To create a new project,

open the menu, submenu, and select . This will open the

“STM32 Target Selector” where you can pick the device you want to program. We

know the Maple Mini uses the so we can just type that in the

search box :

If you are targeting any board made by ST you should go to the “Board Selector” tab

instead of selecting the microcontroller itself. Doing so will let Cube pre-con�gure

your project for the hardware that’s present on those boards. But since our board is

custom, we need to pick its microcontroller and do that work ourselves. Select the

CBT variant (LQFP48) and hit .

The dialog box will now ask you the usual stu� : what’s the name of your project and

where do you want to store it.

https://nefastor.com/wp-login.php
https://nefastor.com/wp-login.php
https://nefastor.com/feed/
https://nefastor.com/feed/
https://nefastor.com/comments/feed/
https://nefastor.com/comments/feed/
https://wordpress.org/
https://wordpress.org/

Note : at the time of writing, C++ actually supported. Choosing this option will

just change the extension of some source �les, and which compiler is invoked when

building, but that’s all. C++ code will compile, but Cube will still only generate C code,

and managing the cohabitation of C and C++ code in the same project just isn’t

worth the e�ort. At least not for rapid prototyping. I suggest sticking to the default

options. Name your project and hit again :

On the �nal dialog, you get to choose which version of ST’s libraries you will use on

this project. I’ve never seen a reason to use anything but the latest. In my screenshot

the drop-list is greyed out because I only have one version of the STM32F1 libraries

installed.

Now hit , so we can start having fun.

1.3. Device Pinout Con�guration

The �rst thing that opens is a device con�guration tab. This used to be a standalone

program called but it is now integrated into the IDE for convenience.

You start on the pinout tab, where you can do three things I’ve written in red on this

screenshot :

The goal of the game is to �ll in the picture as much as possible to describe your

board, since Cube has no idea what you’ve been soldering. The Maple Mini is a very

simple device, so this will go quickly :

Expand and select . This is the block of the STM32 which covers

system clocking. Most STM32 have four oscillators, two internal, two external :

• : High Speed External. The Maple Mini connects an 8 MHz crystal to it.

• : High Speed Internal. An RC oscillator for low-cost, low-accuracy

applications.

• : Low Speed External. The Maple Mini doesn’t use it.

• : Low Speed Internal. Another internal RC oscillator.

STM32 clocking is a vast topic, beyond the scope of this page. For now, simply select

“ ” for the and leave the LSE disabled. Notice how

the picture of the microcontroller changes, pins turning green as they are

automatically assigned the function that matches your settings.

Still under , select . This block lets you set the type of debug

interface your board implements. In our case that’s , so you must select “

“.

So far, so good. Since the oscillator and debug pins are unique, Cube could set them

up for you without risk of ambiguity. Now let’s take care of the LED and the user

button. Those are GPIO (general purpose I/O) pins and Cube can’t know which ones

we use. But we do, thanks to the Maple Mini’s pin map. The LED is connected to

and the button to .

If you can’t �nd those pins on the drawing (which can be tedious on larger MCU’s

with hundreds of pins) use the search box at the bottom of the con�gurator. Once

you found the pin you want, left-click on it. This will open a list of all possible

functions for that pin. You can also right-click on a pin to rename it.

Set as a “ ” and rename it .

Set as a “ ” and rename it .

The names aren’t just cosmetic : when Cube generates your project’s initialization

code, all the constants for your pins (the port and pin numbers) will have those

names in them. It’s all about making your life easier.

Now go back to the section and select . You should see a list with

the two pins you’ve con�gured for the LED and button. The GPIO block lets you

setup additional features for each pin, most importantly their drive mode (push-pull

or open-drain), initial state and whether or not their internal pull-up or pull-down is

enabled.

The on the Maple Mini is connected between PB1 and GND : it needs to be

driven by a output.

The on the Maple Mini is a normally-open type with a 10 K pull-down. When

the button is pressed, it connects PB8 to VCC through a 1 K resistor. Therefore,

there’s no need to use the internal pulling resistors and we also know that the pin

will read as zero by default, and as one when pressed.

At this point, the chip in the device con�gurator should look like this :

Pretty self-explanatory if you ask me. But then again, I’m really good at this stu�.

Keep in mind that you don’t have to setup all the pins used on your board from the get go

: you can come back at any time, modify your con�guration and regenerate the

initialization code as many times as you want. No pressure. Just make sure you don’t

con�gure an input as an output and blow up a component on your board.

Anyway, it’s now time to setup the microcontroller’s clocking. Hit the

 tab at the top of the device con�gurator and try to stay calm.

1.4. Device Clocking Con�guration

You will be greeted by this arcane schematic :

I ain’t gonna lie, that’s not very intuitive. And bear in mind that this is pretty much

. The largest devices (some of which have

multiple cores) look like oil re�neries. Thankfully, we’re only trying to blink an LED for

now.

This schematic is interactive. Near the block, you need to enter the frequency of

the Maple Mini’s crystal in the box. That’s 8 MHz.

From this value, Cube will compute the frequency each clock domain will receive

every time you change a setting. Those frequencies are regrouped on the right side

of the diagram. Notice that the ARM Cortex-M3 core will receive only 8 MHz. This is

signi�cantly slower than the 72 MHz advertised for the STM32F103… but it would be

more than enough for blinking an LED.

Still, I hate leaving performance on the table even if I don’t need it. And this is a good

opportunity to introduce the topic of clock con�guration.

In theory you could just enter 72 in the core frequency box and let Cube try to solve

how to setup the clock circuitry. In practice, this usually leads to imperfect results or

even outright failure :

The best approach is to �ddle with all the settings until you get what you need. A bit

of logic helps a lot. For example :

• HSE is 8 MHz, so is HSI, therefore the only way to get 72 MHz is to use the .

Feed the HSE into the PLL and then select as the system clock (SYSCLK)

• Doing so will turn the “Enable CSS” button blue. Ignore it. It’s a safety feature

irrelevant to most users. Enabling it does no harm, though.

• Core clock is now set to 16 MHz. To get it to 72 we need to change the PLL’s

multiplier from 2 to 9. Yes, learning those multiplication tables when you were a

kid is paying o� ! Who woulda thunk !

• Core clock is now 72 MHz, but a couple of blocks have turned red : we’ve

exceeded their maximum operating frequency. Set the to /2

instead of /1 to �x that.

The schematic should now look like this :

 checks for con�guration errors in real time. Even if your clock settings are

valid, they might still result in frequencies that are too high or too low for some of

the peripherals you’ve enabled. Go back to the tab and look

for red error marks.

In this case you shouldn’t see any. Time to generate the code !

In the menu, hit and let mayhem begin the magic happen.

1.5. Add Your Application Code

Once code generation has completed, a lot of folders and �les will appear in your

project’s hierarchy :

“ ” is where the initialization and application code live.

“ ” contains standard ARM libraries () and the ST HAL (

) libraries.

“ ” is the output folder where every �le generated during the build process will

end-up. That includes the executable binary that will be �ashed into the STM32.

The �le is your device con�guration : open it to return to the device

con�gurator.

At this point, the project will actually compile, �ash and run… but of course it would

do nothing. All it is at this point is a truckload of (unused) libraries, startup code that

will setup your chip as you’ve speci�ed, and a main function with an empty in�nite

loop.

Let’s change that.

To blink an LED we only need to learn how to do two things besides C syntax :

• a state to an output pin

• a while for our human senses to register that state

Used to be, learning how to assign a pin’s state would require learning register

addresses and bit organization in those registers. As for waiting, we’d have had to

write a delay function based on a loop or a timer interrupt, which would have led to

timing calculations. This is 2020, nobody has time for all that anymore. That’s why

we have the .

First, let’s open the source �le we’ll be working on : under , double-click

“ “. Scroll down until you �nd the function, and keep scrolling until you

reach the in�nite loop, in the form of a “while (1)” statement.

1.6. GPIO Operations

Turning the LED on and o� means assigning a state to a GPIO pin.

Each peripheral within the STM32 has its own HAL header �le. Therefore, we need to

�nd the HAL GPIO header �le. It’ll be under .

Each �le in that folder pertains to a speci�c peripheral. Look for the one that has

GPIO in its name : “ “. Open it. I hope you speak C.

This header �le will tell you a few interesting things :

• There’s an enumeration named that’s got two entries : SET and

RESET, with RESET equal to zero. Doesn’t take a genius to know what it’s used

for. That’s our pin state data type.

• There are prototypes for all sorts of I/O functions, one of which is called

. Again, doesn’t take genius to know what it does.

The ST HAL naming scheme is very intuitive. It’s clear that the

function requires a port number, a pin number and a pin state. We’ve already found

the data type for the pin state.

The HAL header also contain generic macros for the port and pin numbers, and we

could use those, but remember we did name the LED pin. Cube generated macros

based on that name. You will �nd them in “ “, under :

We now have all the information necessary to call the HAL and turn the LED on and

o�.

1.7. Delay Function

Finding the HAL’s inevitable delay function is a bit less obvious, since it isn’t a

hardware peripheral.

There is a HAL header �le which name doesn’t specify a peripheral :

“ “. Inside it, you’ll �nd the prototype for a function named

. I’ll give you one guess as to what it does.

1. #define LED_Pin GPIO_PIN_1

2. #define LED_GPIO_Port GPIOB

OK, maybe that’s a bit mean of me… sure, there’s a prototype but there’s no

comment to tell us if the delay it creates has to be speci�ed in microseconds,

butter�y lifespans or eons. This will happen. Don’t be afraid to Google STM32 HAL

function names, there’s a lot of documentation online.

Let me save you the trouble this time : takes a value in .

And now we know how to make sure the LED blinks slow enough that our limited

human eyes will be able to notice.

Let’s put everything together.

1.8. Paint Inside the Lines

Locate the empty “while” loop in “ ” and add code to blink the LED.

This can be done in many di�erent ways, for example :

The exact way you choose to blink that LED isn’t important, what you really need to

notice in this code snippet is that I painted inside the lines.

The code generated by Cube is sprinkled with “USER CODE” comments to tell you

where your code should start and where it should end. You need to respect that.

And whatever you do, you need to keep those comments. will

happen if you change or delete one. So don’t.

Those comments are just comments. If you write code outside of the areas delimited

by “USER CODE” comments, it’ll still compile and work. However, if you ever

 the project then anything you’ve written outside those comments

. And there’s no Control-Z-ing this.

Conversely, if you write all your application code between the “USER CODE”

comments, Cube will preserve it every time you regenerate.

1. /* Infinite loop */

2. /* USER CODE BEGIN WHILE */

3. GPIO_PinState state = 0;

4. while (1)

5. {

6. /* USER CODE END WHILE */

7.

8. /* USER CODE BEGIN 3 */

9. HAL_GPIO_WritePin(LED_GPIO_Port, LED_Pin,

state);

10. state = 1 - state;

11. HAL_Delay (250);

12. }

13. /* USER CODE END 3 */

Needless to say, this applies to source �les created by Cube. Cube won’t mess

with any source �le you create on your own.

1.9. Mind the Default Firmware

It’s taken a while, but here we are : with a software project designed to con�gure the

STM32F103 and then proceed to blink an LED. All that’s left to do is and

 it into the Maple Mini.

That’s easy enough : there’s a nice “run” button in Cube’s tool bar that will take care

of everything. It looks like this :

Before you hit it, make sure that your board is powered (for example by plugging a

USB charger into the Maple Mini’s USB socket. A computer will also work). Make sure

the SWD probe is connected to both your PC and your board.

It’s possible that your probe’s �rmware may be outdated, in which case Cube won’t

be able to �ash your MCU. Go to Cube’s menu, select and

follow the instructions. It’s also a good way to check that your probe is connected to

your PC, if there’s any doubt.

Now you can hit that “run” button.

As with any other IDE you will see the compilation messages �ow down in Cube’s

console pane (under your code editor). If you’ve been meticulous and did everything

I’ve told you to do, there will be no error and no warning, and Cube will proceed to

�ash your Maple Mini.

And that’s when you might hit a .

The �rst time you try to �ash a new Maple Mini module, there’s every chance it’ll fail.

You will see this error message :

It is very likely that any Maple Mini you get your hands on will come with a

 microcontroller. It appears our friendly Chinese factory

workers are kind enough to burn a into every Maple Mini they

 Paris, France

produce, at no extra cost to you and me, I’m sure.

That bootloader will prevent you from using and so it needs to disappear. Try

�ashing again but this time while you

start �ashing. This will “bypass” the bootloader. It will also hold �ashing on pause

after the message “Starting server with the following options:” appears in Cube’s

console. At that point, and �ashing will proceed. Good

news : you only need to do this . After your program has overwritten the DFU

bootloader, SWD will operate normally and won’t require a reset ever again.

And that’s it… if all went well, you should be looking at a blue LED blinking twice per

second. If not, well it’s not my fault. It always works when I do it.

Next, we’ll attach a generic to one of the Maple Mini’s SPI buses,

thereby improving our board’s usability by a factor I couldn’t quantify, but that

marketing evaluates it somewhere between “ginormous” and “xxxtreme”.

CONTACT NEFASTOR LEGAL COMPUTERS MICROCONTROLLERS ROBOTICS

https://nefastor.com/contact-nefastor/
https://nefastor.com/contact-nefastor/
https://nefastor.com/legal/
https://nefastor.com/legal/
https://nefastor.com/computers/
https://nefastor.com/computers/
https://nefastor.com/microcontrollers/
https://nefastor.com/microcontrollers/
https://nefastor.com/robotics/
https://nefastor.com/robotics/

